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Abstract. The temperature dependence of the 1st and 3rd harmonics (χ′,′′
1,3) of the AC magnetic suscep-

tibility has been measured on melt grown YBCO samples for different frequencies and amplitudes of the
AC magnetic field and intensity of a contemporaneously applied DC field. With the help of critical state
models and of numerical simulations [22], we have devised a novel method, based on the combined anal-
ysis of the 1st and the 3rd harmonics (specifically on the comparison between χ′′

1 and χ′
3), that allows

to distinguish different temperature ranges dominated by the different dissipative magnetic flux regimes.
In particular, we identified three principal “zones” in the temperature dependence of the real part of the
3rd harmonic: the “zone 1”, in the temperature range below the peak of the imaginary part of the 1st
harmonic, Tp(χ

′′
1 ), and the “zone 2”, characterized by χ′

3 negative values in a temperature region just
above Tp(χ

′′
1 ), both dominated by the creep regime; the zone 3, just below Tc, in which we revealed the

presence of Thermally Assisted Flux Flow (TAFF). By the identification of these “zones”, an estimation
of the value of the pinning potential can be obtained.

PACS. 74.25.Ha Magnetic properties – 74.60.Ge Flux pinning, flux creep, and flux-line lattice dynamics

1 Introduction

Magnetic properties of the High Temperature Supercon-
ductors (HTS) have been widely studied in order to under-
stand the mechanisms governing the flux lines dynamics,
and to find the key to improve the application properties
of these materials. Although the same kind of information
can be extracted by means of direct transport measure-
ments, the high sensitivity of the AC susceptibility tech-
nique gives the opportunity to investigate the low voltage
region in the I-V characteristics, such as the TAFF regime.
These studies have shown that the magnetic response of
a superconductor can be both linear and nonlinear, which
is characterized by the presence of higher harmonics [1,2].

The meaning of the first harmonic is clear: its real part
is associated to the screening properties of the sample, and
the imaginary part is proportional to the energy converted
into heat during one cycle of AC field [3,4]. On the other
side, the physical interpretation of the higher harmonics
of the AC susceptibility is still under discussion, as well
as the strong differences in the shape of their curves mea-
sured in different conditions still need clarifications.

The existence of higher harmonics, due to hysteretic
losses, was first predicted by Bean [5,6]. In his frequency
independent critical state model, in which the critical cur-
rent density (Jc) is independent of the magnetic field (B),
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the even harmonics are zero. Nevertheless, non zero even
harmonics are predicted, by the Kim critical state model,
in which a magnetic field dependent Jc is considered [7–9].
Shatz et al. [10] showed that all the critical state mod-
els can be described in terms of a unique parameter δ,
which measures the extent of penetration of the AC field
into the slab. δ depends on the slope S of the field pro-
file inside the sample (the slope S being a function of the
temperature and the field dependent Jc), on the applied
magnetic field hac and on the geometrical dimension of
the sample. In particular, for a slab with thickness 2a,
δ = hac/(S·a). In the Bean model δ = hac/H∗, where H∗
is the smallest field that penetrate the whole sample. The
AC susceptibility harmonics, calculated by using any crit-
ical state model, are independent of the frequency ν of
the applied AC field [10]. Nevertheless, many experimen-
tal results show that variations of all the harmonics χn

appear in correspondence of different AC frequencies. In
particular, the fundamental harmonic χ1 show a change
in the width of the superconducting transition both in
the real (χ′

1) and in the imaginary component (χ′′
1), and

a variation of the height and of the temperature Tp(χ′′
1),

corresponding to the peak position in χ′′
1 , whereas the gen-

eral shape of the curves of both the components remains
unchanged [11,12].

For the 3rd harmonic, different AC frequencies produce
variations in the height and in the temperature of the peak
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maximum of the |χ3| modulus and of its breadth [13,14].
The variation of the temperatures Tp(χ′′

1) and Tp (|χ3|)
can be explained by modifying the critical state models,
taking into account the presence of relaxation phenom-
ena, i.e. by introducing a critical current density Jc(ν)
which increases with the frequency ν [14,15]. However,
these modified critical state models are not able to ex-
plain the variations of the χ′′

1 and |χ3| peak heights and
the large variations in the shape of the two separate com-
ponents χ′

3 and χ′′
3 , which experimentally appear as the

frequency is changed [16–18].
The study of these variations can be usefully tackled

by using numerical techniques, which integrate the dif-
fusion equation of the magnetic field inside the sample,
where the diffusion processes are determined by the resis-
tivity ρ. From the numerical solutions of the equation, the
harmonics (in particular the 3rd) of the AC susceptibil-
ity have been computed both in presence and in absence
of a DC external magnetic field by considering only the
presence of creep phenomena (ρ = ρcreep) [19,28], this giv-
ing also a good method for the estimation of the pinning
potential [20,21].

The diffusion equation has been also solved by includ-
ing all the dynamic regimes (Flux Creep, Flux Flow, Ther-
mally Activated Flux Flow or TAFF, and the parallel of
Flux Creep and Flow) without a DC magnetic field [22].
At fixed frequency (and more generally at fixed external
parameters), the shape of the 3rd harmonics also shows
significant variations, essentially due to different pinning
properties [22,23]. Moreover shape variations due to the
sample geometry have been predicted [24–26].

Nevertheless, up to now, a detailed comparison be-
tween experimental results and numerical simulations is
missing.

The aim of this work is the analysis of the temperature
dependence of the 3rd harmonics measured on melt grown
YBCO samples, in order to determine the connection be-
tween the detailed structure in the shape of the curves
and the flux dynamic regimes. This has been obtained by
measuring the AC susceptibility on different samples with
the same geometry, thus excluding all the variables related
to the sample geometrical characteristics. In particular we
will illustrate a new method, based on the comparison of
both the curves of the 1st and 3rd harmonics, allowing us
to detect the flux regimes which are predominant in the
different temperature ranges of the χ′,′′

1,3 curves.
The method does not depend on the analyzed sample,

and it can be straightforwardly adapted to the analysis
of the AC magnetic response of other bulk high-Tc super-
conductor samples with similar geometric properties. So,
although we tested the method on different samples, for
simplicity here we only reported the data referred to one
sample.

2 Experimental details

An in-house made AC susceptometer has been used to
measure the temperature dependence of the first (χ′,′′

1 )

and the third (χ′,′′
3 ) harmonics of the AC susceptibility

on different melt grown Y1Ba2Cu3O7-δ samples, obtained
by cutting a 10 cm long directionally solidified bar (fab-
ricated following the procedure described in Ref. [27])
from the central part of the sample, where the homo-
geneity was checked to be the highest. In this work we
will refer mainly to a homogeneous slab with dimensions
1.8 mm× 3.2 mm× 5 mm, cut exactly at the geometrical
center of the bar, although similar results have been found
on the other samples.

First characterization of the sample was performed
by means of magnetization curves, and the values Jc

(77 K; HDC = 0) = 8.4 × 107 A/m2 (corresponding to
Jc (0 K; HDC = 0) ≈ 109 A/m2) and Tc(onset) ≈ 91.6 K
were determined.

In susceptibility measurements, particular care has
been taken to maximize the thermal contact between the
thermometer and the sample, and a very slow temperature
sweep (0.1 K/min) has been used in order to optimize the
thermal stability, to minimize the error on the temper-
ature readings and to avoid thermal gradients along the
sample.

Moreover, the sensitivity of the 3rd harmonic curve
shape to the phase setting of the measurements forced us
to choose it in a very accurate way: for every frequency, the
phase has been set such that the imaginary part of the first
harmonic is zero, at the lowest AC field (hAC = 0.5 Oe)
and at a temperature T � Tc (T ≈ 52 K). We also verified
that the same phase results from a setting done at T > Tc,
where dissipations are negligible, being the skin depth δn

much larger than the characteristic size of the sample (for
example δn = 8 cm for ν = 107 Hz). In this way, the phase
uncertainty was lower than 0.1 degree.

Measurements were performed applying magnetic
fields parallel to the longitudinal axis of the sample, at
different AC field amplitudes (hAC = 1, 2, 4, 6, 8, 16,
32 Oe) and frequencies (ν = 10.7, 107, 1607, 10700 Hz),
both with and without an external DC field (HDC = 0,
100, 200, 400 Oe).

3 Experimental results and discussion

3.1 AC susceptibility measurements with HDC = 0

In Figure 1a and in the Inset, the temperature depen-
dences of the real component of the first harmonic χ′

1 (T )
are plotted for different ν and hAC respectively, with
HDC = 0. The dependence of χ1 (T ) on the AC field ampli-
tude confirms a non-linear dynamic response. As the AC
amplitude increases, a general broadening of the transition
appears, the step-like transition in the real part χ′

1 (T )
becomes always smoother, whereas in the corresponding
imaginary part (not shown) a decrease of the temperature
of the peak (Tp), an increase of the peak height, (χ′′

1)MAX,
towards the value 0.24 (predicted in the Bean critical state
model [5,6]), and a general widening of the peak appears.
Nevertheless, such broadening does not give us any de-
tailed information about the flux dynamic regime govern-
ing the magnetic response of the sample. On the other
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Fig. 1. a) The weak frequency dependence of the real part of the 1st harmonics of the AC susceptibility χ′
1 (T ), plotted as

function of the temperature for different frequencies ν and with fixed hAC and HDC = 0; Inset of (a): χ′
1 (T ) at different AC

field amplitudes hAC and for fixed ν and HDC = 0; b) The relatively strong frequency dependence of the 3rd harmonics χ′
3 (T )

corresponding to the χ′
1 (T ) curves in (a): even the shape of the χ′

3 (T ) curves change with the frequency; Inset of (b): The
χ′

3 (T ) curves measured at different AC field amplitudes hAC and for fixed ν and HDC = 0.

hand, the measurements show that the first harmonic of
the AC susceptibility is just weakly dependent on the fre-
quency of the AC field, as reported in Figure 1 for the real
component. This frequency independent χ1 (T ), together
with its dependence on the AC field amplitude, suggests
that the detected magnetic response can be interpreted
mainly in terms of a critical state model, with a negligible
contribution coming from dynamic effects.

On the contrary, the analysis of the 3rd harmonics
shows that the curves depend strongly also on the AC

field frequency, as reported in Figure 1b, and not only on
its amplitude (see inset of Fig. 1b). For this reason, the
third harmonic represents a very sensitive tool to investi-
gate the flux dynamics.

As it has been reported in a previously published pa-
per [18], the χ3(T ) measurements on an YBCO sample
coming from the same batch are in qualitative agreement
with the results obtained by numerical simulations [22]
of diffusion processes in the framework of the collective
pinning model [29,30]. Therefore, in the present work, as
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Fig. 2. An experimental χ′
3 (T ) curve, measured at ν = 1607 Hz, hAC = 8 Oe, and HDC = 0, summarizing the analysis discussed

in the text for HDC = 0 (quadrants Q1, Q2, Q3, and Q4), and evidencing the existence of the 3 different individuated zones: the
“zone 1” (vertical lines filled), i.e. the χ′

3 (T ) no-zero values for T < Tp(χ
′′
1 ); the “zone 2” (horizontal lines filled), characterized

by negative values of χ′
3 (T ) near Tp(χ

′′
1 ), restricted between Tp(χ

′′
1 ) and a temperature T ∗

1 (dashed line); the “zone 3” (crossed
lines filled), with negative values just below Tc, between a temperature T ∗

2 (dash dot dot line) and Tc = T3on. The zones 1 and 2
are due to the creep and/or to the Flow, whereas the zone 3 is due to the TAFF and/or to the Flux Flow.

far as the comparison with numerical simulations is con-
cerned, only this model will be considered for the Up and
Jc temperature dependences.

A combined analysis of the simulated behavior of the
1st and 3rd harmonics of the AC susceptibility, together
with the results predicted by the Bean critical state model
suggest that it is possible to identify the different vortex
dynamics regimes governing the AC magnetic response of
the sample.

Indeed, in the Bean model the value χ′
3 (T ) is zero if the

parameter δ < 1 (i.e. if H < H∗). For a cylindrical sample,
the temperature at which the AC field amplitude is equal
to the full penetration field (δ = 1) is the peak tempera-
ture (Tp) in χ′′

1 , i.e. T (δ = 1) = Tp(χ′′
1) ≡ Tp [2,31]. For a

slab, this equality is valid within an error of ∼1%. There-
fore, in the Bean critical state model, χ′

3 = 0 for T < Tp.
Moreover, since in the critical state models the χ′

3 can only
assume values ≥ 0, the presence of negative values of χ′

3

and χ′
3 �= 0 values for T < Tp indicates that the sample

response is governed by dynamic phenomena which can
not be described in terms of the Bean model. From the
diffusion equation simulations [19,22,28], it is possible to
identify the different dynamical regimes that are experi-
mentally evident both for T > Tp and for T < Tp.

In Figure 2 the experimental χ′
3 (T ) curve, taken at ν =

1607 Hz, hAC = 8 Oe, and HDC = 0, is shown, where no-
zero values are present for T < Tp (let’s define this region:
“zone 1”) and negative values can be found in two different
portions for T > Tp: the “zone 2” at temperatures slightly
higher than Tp, between Tp and a temperature we call T ∗

1 ,
and the “zone 3” at temperatures slightly lower than the

onset of χ′
3, T3on(χ′

3) between a temperature indicated
with T ∗

2 and T3on(χ′
3).

Experimentally, these zones have been found to have
different frequency dependences, suggesting that they can
be due to different dynamical regimes.

By analyzing the χ′
3 (T ) simulated curves [22], ob-

tained by considering the TAFF resistivity in the diffu-
sion equation (ρ = ρTAFF) (Eq. (2) in [22]), the influence
of the TAFF can be definitely neglected for temperatures
well below Tp, where give a negligible contribution. On
the contrary, the χ′

3 (T ) curves, simulated by imposing the
presence of the Flux Creep (i.e. ρ = ρCreep in the diffusion
equation) [19,22] suggest that the main contribution to
the experimental magnetic behavior in both the “zone 1”
and the “zone 2” can be ascribed to creep phenomena.
However, in principle the contribution of flux flow in these
zones cannot be completely neglected. On the other side,
the “zone 3” can not be described in terms of flux creep
events, since, in proximity of T3on(χ′

3), the χ′
3 (T ) curves

simulated with ρ = ρCreep assume only positive values.
Therefore, the dynamic regimes which can influence the
“zone 3” can only be the Flux Flow and the TAFF.

It is worth mentioning that the presence of all the dif-
ferent zones is not identified in all the performed χ′

3 (T )
measurements, since they are dependent on the exper-
imental parameters ν, hAC and HDC, which determine
the dynamic regime governing the AC magnetic response
of the sample. For example, in the measurements at
ν = 1607 Hz the existence of the “zone 2” is always evi-
dent for all the applied AC field amplitudes, and the size
of this zone increases for increasing hAC, as shown in the
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Fig. 3. a) Comparison between the temperature dependences
of χ′′

1 and χ′
3 in absence of DC magnetic field at ν = 1607 Hz,

for hAC = 1 Oe, and b) for hAC = 16 Oe, showing the presence
of the “zone 2” which increases for increasing AC field ampli-
tudes. The vertical dashed lines mark the temperature Tp of
the peak in the χ′′

1 (T ) curves, and the dotted lines correspond
to the temperature below which the χ′

3 (T ) curves assume neg-
ative values. The data are reported in arbitrary units in order
to compare the first and the third harmonics in the same plot.

Figures 3a and 3b for hAC = 1 Oe and hAC = 16 Oe re-
spectively. On the other hand, at ν = 107 Hz the “zone 2”
is not present for fields hAC up to 8 Oe (see Fig. 4a), but at
higher AC fields it becomes dominant and coalesces with
the “zone 3”, as reported in Figure 4b.

Nevertheless, some characteristics common to all the
measurements at HDC = 0 can be summarized:

– the “zone 1” is always present for any ν and hAC,
– at fixed hAC and for increasing frequencies, the mini-

mum in χ′
3 (T ) at T < TP becomes deeper,

– as far as the AC frequency increases a reduction of
the height of the χ′

3 (T ) maximum occurs in the region
where the curves are similar to the Bean model ones,

– as the AC field increases, at fixed ν, the “zone 2” grows
towards higher temperature and the minimum in the
“zone 1” becomes more pronounced.

Fig. 4. a) Comparison between the χ′′
1 (T ) and χ′

3 (T ) at
HDC = 0 and ν = 107 Hz, for hAC = 4 Oe, and b) for
hAC = 32 Oe. The appearance of the “zone 2” for hAC > 8 Oe,
which increases and melts with the “zone 3” as hAC is in-
creased, indicates that at high enough AC magnetic fields it is
not possible to determine a temperature region in which the
AC magnetic response is governed by hysteretic phenomena.
The vertical dashed lines mark the temperature Tp for each
measurement. The data are reported in arbitrary units in or-
der to compare the first and the third harmonics in the same
plot.

These behaviors suggest an enhancement of the dynamic
effects, when ν and hac increase, very likely due to the flux
creep regime.

3.2 AC susceptibility measurements with HDC �= 0

The same analysis has been performed also in presence of
a DC field (HDC) up to 400 Oe.

All the 1st harmonics measured with HDC �= 0 (not
reported here) show some common features. First of all,
for increasing HDC, the width of the transition (and, then,
the width of the peak in χ′′

1 (T )) increases, especially at
higher AC field amplitudes. Moreover, both the temper-
ature TP and the temperature of the onset in the χ′

1 (T )
curve moves towards lower temperatures, according to a
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Fig. 5. Typical temperature dependences of χ′′
1 and χ′

3 obtained with HDC � hAC, summarizing the analysis discussed in the
text for HDC �= 0 (see also Fig. 2). The “zone 3” previously found in Figure 2 is absent here. In the “zone 1” (vertical lines
filled) and in the “zone 2” (horizontal lines filled) the creep contribution can be detectable.

critical state description, although the value of (χ′′
1 )MAX

is always smaller than the value predicted in the critical
state models. However, the value (χ′′

1 )MAX increases with
the AC field amplitude (at fixed HDC), being more ev-
ident at low hAC and HDC. In general, the effect of an
increasing hAC on the 1st harmonics is similar to what is
produced by an increase of HDC, and the general behav-
ior is in agreement with both the measured and simulated
data reported in literature [11,32]. Finally, the presence
of a non-zero DC field amplifies the decrease of TP and
the increase of (χ′′

1)MAX produced by the use of higher
frequency ν, which cannot be described in terms of criti-
cal state [11,12,28]. Also in the case with HDC �= 0, the
information about the flux dynamics regimes can be ex-
tracted by using the combined analysis of the 1st and the
3rd harmonics.

In Figure 5 the typically measured temperature de-
pendences of χ′′

1 and χ′
3 obtained with HDC �= 0 are plot-

ted, as representative of all the measurements in presence
of a DC field, to illustrate this procedure. Also in the
presence of a DC field, we can identify different “zones”
dominated by non-linear dynamic phenomena, but these
regions are different from the previous case. In particu-
lar, for T ≤ T3on(χ′′

3 ) the “zone 3” with χ′
3 < 0, previ-

ously identified in the measurements with HDC = 0, is
not present anymore. The variation with the DC field of
the χ′

3 temperature dependences is reported in Figure 6a,
where the difference due to the application of a DC mag-
netic field is magnified in the inset. Analogously, in Fig-
ure 6b, at HDC �= 0, close to T3on(χ′′

3 ), the χ′′
3 (T ) curves

exhibits a negative minimum, as it is expected [6] from
critical state models, which is absent at HDC = 0 (see the
inset of Fig. 6b). These behaviors were expected from the
indications given in the previous analysis of the curves at
HDC = 0: the presence of the “zone 3” is to be attributed

to the TAFF or the Flux Flow regimes. In presence of
magnetic fields HDC � hAC, the total field is almost con-
stant, so that the field dependence of the Flux Flow and of
the TAFF resistance disappears, generating a linear dif-
fusion process of the magnetic field, so that there is no
higher harmonic contribution.

On the other hand, the previously identified “zone 2”
is still present for any DC field, but only for low AC field
amplitudes. In fact, for ν = 1607 Hz the “zone 2” disap-
pears for increasing hAC ≥ 4 Oe, as it is shown in Fig-
ure 7 by the comparison between the χ′′

3 (T )curves, taken
at various hAC, and the relative Tp extracted from the
corresponding χ′′

1 (T ) measurements.
In any case, for T < Tp, the χ′

3 �= 0 values prove the
presence of dynamic phenomena which are determined by
the flux creep, that is the only dynamic regime still non
linear even in presence of a static magnetic field HDC �
hAC.

This statement is confirmed by the behaviour of the
χ′

3 (T ) curves measured at different frequencies (see inset
of Fig. 7). In fact, the increase of the AC frequency in-
creases the contributions due to flux dynamics processes
that modify the behaviour due to the critical state. This
result is in agreement with the simulations [22] and the
measurements obtained with HDC = 0.

3.3 The TAFF regime and the estimation
of the pinning potential

In the previously described method, the comparison be-
tween the simulated and the measured curves of the AC
harmonic susceptibility allowed us to detect the pres-
ence of the different flux dynamic regimes which dominate
the experimental AC susceptibility curves in the different
temperature ranges. In particular, by comparing the 3rd
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Fig. 6. a) χ′
3 (T ) measured at different HDC and at fixed ν and hAC: for T > Tp the “zone 3” does not appear if HDC �= 0 (see

the inset in this figure); Inset of (a): Magnification of the region enclosed in the dashed rectangle and corresponding to the curve
at HDC = 0 and at HDC �= 0. b) χ′′

3 (T ) curves corresponding to the χ′
3 (T ) curves in (a): the χ′′

3 (T ) curve exhibits a negative
minimum close to T3on(χ′′

3 ) only if HDC �= 0 (see the inset of Fig. 6b); Inset of (b): Magnification of the region enclosed in the
dashed rectangle of (b), and corresponding to the curve at HDC = 0 and at HDC �= 0.

harmonic in absence and in presence of HDC fields respec-
tively, the existence of the zone 3, for T ≤ Tc, governed
by TAFF or Flux Flow resistivities, has been found.

The numerical simulations in presence of a DC mag-
netic field [32] show that a characteristic temperature T ∗
exists, above which the χ′′

1 (T ) behavior is governed by
linear TAFF resistance, since the Flow resistance is high
that it gives a negligible contribution to the first harmonic.
This T ∗ is nearly coincident with the onset temperature
T3on(χ′′

3), i.e. the temperature below which the imaginary
part of the third harmonic χ′′

3 starts to assume non zero

values. Therefore, a difference ∆Ton between T3on(χ′′
3 ) and

Ton(χ′′
1 ) represents the experimental evidence of the pres-

ence of linear TAFF phenomena in the system under anal-
ysis. This difference has been revealed in the detailed mea-
surements of χ′′

1(T ) and χ′′
3 (T ) performed in presence of

an external HDC � hAC on our samples in the tempera-
ture range around the transition temperature, at different
AC field amplitudes and frequencies.

In Figure 8 a clear example of the presence of the lin-
ear TAFF regime is reported for a particular set of exper-
imental parameters: HDC = 400 Oe � hAC = 1 Oe. On
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Fig. 7. Plot of the χ′
3 (T ) measured at different hAC, and at fixed ν and HDC �= 0. The vertical lines indicate the temperatures Tp

extracted from the corresponding χ′′
1 (T ) curves: note the difference between the cases in which the “zone 2” exists (hAC = 1 Oe

and hAC = 2 Oe) and the ones in which it is absent (hAC = 4 Oe and hAC = 8 Oe); Inset: The behavior of the χ′
3 (T ) for

2 different frequencies and HDC � hAC.

the contrary, for the same sample, measured in the same
conditions but with HDC = 0 (see inset of Fig. 8), it is
not possible to define unambiguously a value ∆Ton �= 0
within the sensitivity of our apparatus.

From the previous considerations, therefore, it is pos-
sible to state that the magnetic behavior of our samples
can be divided in 3 main regions:

i) the region of T < Tp, where the flux creep regime is
prevailing and then the pinning potential Up(T ) �
kBT ;

ii) an intermediate region with Tp < T < T3on(χ′′
3) where

it is not easy to distinguish between the critical state
and the flux creep contributions to the harmonic re-
sponse;

iii) the region of T3on(χ′′
3) < T < Ton(χ′′

1 ) in which the
magnetic response is dominated by the TAFF regime
and then Up(T ) < kBT .

Insofar it is reasonable to assume that, at the temperature
T = T3on(χ′′

3 ), we have:

Up(T3on(χ′′
3 ), B) ≈ kBT3on(χ′′

3 ). (1)

The agreement [18] between our experimental data and
the simulations obtained by considering the collective pin-
ning regime, suggests us to use the collective pinning tem-
perature dependence for the pinning potential [29,30]; so
that the equation (1) can be written as:

Up (0, B)
kB

≈ T3on (χ′′
3 )(

1 −
(

T3on (χ′′
3 )

Tc

)4
) (2)

where for Tc the onset temperature of the first harmonic
can be assumed. If we consider the measurements re-
ported in Figure 8, for HDC = 400 Oe, the values Tc =
(91.17 ± 0.01) K and T3on(χ′′

3 ) = (90.99 ± 0.01) K can be
extracted. By substituting these values in the equation (2),
and using [19,32] the Kim-type dependence:

Up(0, B)
kB

=
Up(0, 0)

kB

(
B0

B + B0

)
(3)

with B0 = 1 T, B = HDC, we can obtain the estimation of
the pinning potential Up(0, 0) at zero magnetic field and
temperature:

Up(0, 0)
kB

= (1.1 ± 0.1) × 104 K.

In order to verify the correctness of our previous assump-
tions, this value can now be used to calculate the potential
Up(T, B) in the zone 1 and zone 3 where respectively the
flux creep and the TAFF phenomena were found to be
dominant, using the following formula:

Up(T, B)
kB

=
Up(0, 0)

kB

(
1 −

(
T

Tc

)4
)(

B0

B + B0

)
. (4)

In fact, for T = 88 K (zone 1) we obtain the value
Up(88 K, 400 G)

kB
= (1.4 ± 0.1) × 103 K � 88 K, and

for T = 91.1 K (zone 3) we obtain Up(91.1 K, 400 G)
kB

=
(34± 8) K < 91.1 K. These results confirm the validity of
our analysis in terms of the flux dynamic regimes acting in
the different temperature regions of the AC susceptibility
experimental curves.
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Fig. 8. Experimental evidence of the ∆Ton indicating the region where the TAFF regime dominates the AC magnetic response,
obtained by comparing the χ′′

1 (T ) and χ′′
3 (T ) with HDC � hAC; Inset: Measurements of χ′′

1 (T ) and χ′′
3 (T ) with the same hAC

and ν as in Figure 8, but with HDC = 0. In this case, no evidence of ∆Ton �= 0 can be found.

4 Conclusions

In this work we have shown that the analysis of only the
fundamental harmonics of the complex AC susceptibility
is not sufficient to correctly interpret the magnetic re-
sponse of YBCO samples in terms of flux dynamics. On
the contrary, the higher sensitivity of the third harmon-
ics to the variation of the experimental parameters and,
therefore, of the magnetic non linear diffusion phenomena
inside the sample, suggests to use these higher AC suscep-
tibility harmonics to investigate the contribution of the
different flux dynamic regimes to the magnetic response
of the sample.

Therefore, starting from the general critical state
model considerations, and from the recent numerical sim-
ulations of the AC magnetic response in presence of the
different dissipative phenomena [22], a method, based on
the combined analysis of the 1st and the 3rd AC harmon-
ics, has been developed in order to identify the different
flux dynamic regimes which are dominant in the various
temperature ranges. Its application to the experimental
results, obtained on YBCO melt textured samples, allowed
us to identify three distinct “zones” in the χ′

3 (T ) measure-
ments, depending on the experimental parameters ν, hAC

and HDC, and their interpretation has been given in terms
of defined dynamic regimes corresponding to each one.

In particular, since in the presence of a DC field
HDC � hAC the TAFF regime is linear, the “zone 1”,
individuated by no zero values of χ′

3(T ) for T < Tp(χ′′
1 )

and the “zone 2”, where χ′
3(T ) assumes negative val-

ues in a temperature range just above Tp(χ′′
1) (namely

Tp(χ′′
1 ) < T < T ∗

1 ), are dominated by the flux creep
regime.

On the contrary, the AC response of the sample in
the “zone 3”, just below the transition temperature, is
dominated by the TAFF. This last regime can be identified
as the temperature range near Tc where negative values
of χ′′

3 (T ) disappear by applying a DC field HDC � hAC,
while χ′′

1 (T ) is still present, resulting in a temperature
difference between the onset of the 1st harmonic and of
the 3rd one.

The qualitative agreement between the numerical and
the experimental curves is good, and the quantitative dif-
ferences can be attributed to the non optimized choice of
the material parameters used for the simulation.

Nevertheless, a quantitative estimation of the pinning
potential of our sample has been derived.

The authors are very grateful to Dr. A. Vecchione and M. Boffa
for their YBCO samples, to Dr. E. Martinucci for the useful
discussions, and to Mr. A. Ferrentino and Mr. F. Vicinanza for
their technical support.
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